https://binarysearch.com/problems/Increasing-Subsequences-of-Size-K
Problem
Given a list of integers nums and an integer k, return the number of subsequences of size k that are strictly increasing.
Mod the result by 10 ** 9 + 7.
Constraints
0 ≤ n ≤ 1,000 where n is the length of nums. 1 ≤ k ≤ 10
Solution
Use Dynamic Programming.
Define dp[i][j] to store the count of increasing subsequences of size i ending with element nums[j].
dp[i][j]=1, where i=1 and 1<=j<=n
dp[i][j]=dp[i][j]+dp[i−1][j], where 1<i<=k, i<=j<=n and nums[m]<nums[j] for (i−1)<=m<j.
Time Complexity: O(k∗n2)
Space Complexity: O(k∗n)
int solve(vector<int>& nums, int k) {
int n = (int)nums.size(), dp[k][n], ans = 0, mod = 1e9 + 7;
memset(dp, 0, sizeof(dp));
for (int i = 0; i < n; i++) dp[0][i] = 1;
for (int l = 1; l < k; l++) {
for (int i = l; i < n; i++) {
dp[l][i] = 0;
for (int j = l - 1; j < i; j++) {
if (nums[j] < nums[i]) {
dp[l][i] = (dp[l][i] + dp[l - 1][j]) % mod;
}
}
}
}
for (int i = k - 1; i < n; i++) {
ans = (ans + dp[k - 1][i]) % mod;
}
return ans;
}
No comments:
Post a Comment