Saturday 22 February 2020

Kubernetes Application Bible for Developers

This is a bible for certified Kubernetes application developers. It covers the features and how to design and build applications to run on Kubernetes. > Updates on 22 Feb 2020 - Updated version to 1.17.3-00 for kubelet, kubeadm and kubectl - Updated kube-flannel as ``extensions/v1beta1`` was removed # Creating a cluster ```bash # Setup Docker & Kubernetes repositories curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add - sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu \ $(lsb_release -cs) \ stable" curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add - cat << EOF | sudo tee /etc/apt/sources.list.d/kubernetes.list deb https://apt.kubernetes.io/ kubernetes-xenial main EOF # Install Docker & Kubernetes sudo apt-get update sudo apt-get install -y docker-ce=18.06.1~ce~3-0~ubuntu kubelet=1.17.3-00 kubeadm=1.17.3-00 kubectl=1.17.3-00 sudo apt-mark hold docker-ce kubelet kubeadm kubectl # Enable iptables bridge call echo "net.bridge.bridge-nf-call-iptables=1" | sudo tee -a /etc/sysctl.conf # Make that change take effect immediately sudo sysctl -p ``` ## Setting up the Kube master server ```bash # Initalize the cluster sudo kubeadm init --pod-network-cidr=10.244.0.0/16 # Setup local kube config mkdir -p $HOME/.kube sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config sudo chown $(id -u):$(id -g) $HOME/.kube/config # Install Flannel networking kubectl apply -f https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml ``` ## Setting up the Kube node server ```bash # The command is part of output of kubeadm init running on your master sudo kubeadm join $controller_private_ip:6443 --token $token --discovery-token-ca-cert-hash $hash ``` # Working with Kubernetes Objects > Kubernetes Objects are persistent entities in the Kubernetes system. Kubernetes uses these entities to represent the state of your cluster. Ref: [https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/](https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/) List all the object types ``` kubectl api-resources -o name ``` ```bash # Some examples Pod Node Service ServiceAccount ... ``` Example of a Kubernetes Object : deployment.yml ``` apiVersion: apps/v1 kind: Deployment metadata: name: nginx-deployment spec: selector: matchLabels: app: nginx replicas: 2 # tells deployment to run 2 pods matching the template template: metadata: labels: app: nginx spec: containers: - name: nginx image: nginx:1.7.9 ports: - containerPort: 80 ``` Use ``kubectl apply`` ``` kubectl apply -f deployment.yml --record ``` # Working with Pods > A Pod is the basic execution unit of a Kubernetes application–the smallest and simplest unit in the Kubernetes object model that you create or deploy. A Pod represents processes running on your Cluster. Ref: [https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/](https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/) Example of pod definition: my-pod.yml ```yml apiVersion: v1 kind: Pod metadata: name: myapp-pod labels: app: myapp spec: containers: - name: myapp-container image: busybox command: ['sh', '-c', 'echo Hello Kubernetes! && sleep 3600'] ``` ```bash # Create a pod from the definition file in yaml format kubectl create -f my-pod.yml # Edit a pod and re-apply a pod definition kubectl apply -f my-pod.yml # Another way to edit a pod (Changes will be taken effect immediately) kubectl edit pod my-pod # Delete a pod kubectl delete pod my-pod ``` # Working with Namespace > Kubernetes supports multiple virtual clusters backed by the same physical cluster. These virtual clusters are called namespaces. Ref: [https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/](https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/) By default, a Kubernetes cluster will instantiate a default namespace. ``` NAME STATUS AGE default Active 13m ``` Create a namespace ``` kubectl create ns development ``` Spcify a namespace in ``metadata.namespace`` attribute ``` apiVersion: v1 kind: Pod metadata: name: my-pod namespace: my-namespace labels: app: myapp spec: containers: - name: myapp-container image: busybox command: ['sh', '-c', 'echo Hello World! && sleep 3600'] ``` ``` kubectl create -f my-namespace.yml ``` Get a list of the namespaces in the cluster ``` kubectl get namespaces ``` ``` NAME STATUS AGE development Active 5m default Active 1d kube-system Active 1d kube-public Active 1d ``` Specify a namespace when using ``kubectl get`` ``` kubectl get pods -n my-namespace ``` Specify a namespace when using ``kubectl describe`` ``` kubectl describe pod my-pod -n my-namespace ``` # Working with ConfigMaps > ConfigMaps allow you to decouple configuration artifacts from image content to keep containerized applications portable. Ref: [https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/](https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/) ## Consuming ConfigMap as Environment Variables ``` apiVersion: v1 kind: ConfigMap metadata: name: my-config-map data: myKey: myValue anotherKey: anotherValue ``` ``` apiVersion: v1 kind: Pod metadata: name: my-configmap-pod spec: containers: - name: myapp-container image: busybox command: ['sh', '-c', "echo $(MY_VAR) && sleep 3600"] env: - name: MY_VAR valueFrom: configMapKeyRef: name: my-config-map key: myKey ``` ## Consuming ConfigMap as Mounted Volume ``` apiVersion: v1 kind: Pod metadata: name: my-configmap-volume-pod spec: containers: - name: myapp-container image: busybox command: ['sh', '-c', "echo $(cat /etc/config/myKey) && sleep 3600"] volumeMounts: - name: config-volume mountPath: /etc/config volumes: - name: config-volume configMap: name: my-config-map ``` # Working with SecurityContexts > A security context defines privilege and access control settings for a Pod or Container. Ref: [https://kubernetes.io/docs/tasks/configure-pod-container/security-context/](https://kubernetes.io/docs/tasks/configure-pod-container/security-context/) ``` apiVersion: v1 kind: Pod metadata: name: my-securitycontext-pod spec: securityContext: runAsUser: 2001 fsGroup: 3001 containers: - name: myapp-container image: busybox command: ['sh', '-c', "cat /message/message.txt && sleep 3600"] volumeMounts: - name: message-volume mountPath: /message volumes: - name: message-volume hostPath: path: /etc/message ``` # Working with Resource Requests > When you specify a Pod, you can optionally specify how much CPU and memory (RAM) each Container needs. When Containers have resource requests specified, the scheduler can make better decisions about which nodes to place Pods on. And when Containers have their limits specified, contention for resources on a node can be handled in a specified manner. For more details about the difference between requests and limits, see [Resource QoS](https://git.k8s.io/community/contributors/design-proposals/node/resource-qos.md). Ref: [https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container](https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container) ``` apiVersion: v1 kind: Pod metadata: name: my-resource-pod spec: containers: - name: myapp-container image: busybox command: ['sh', '-c', 'echo Hello Kubernetes! && sleep 3600'] resources: requests: memory: "64Mi" cpu: "250m" limits: memory: "128Mi" cpu: "500m" ``` # Working with Secrets > Kubernetes secret objects let you store and manage sensitive information, such as passwords, OAuth tokens, and ssh keys. Putting this information in a secret is safer and more flexible than putting it verbatim in a Pod definition or in a container image. Ref: [https://kubernetes.io/docs/concepts/configuration/secret/](https://kubernetes.io/docs/concepts/configuration/secret/) Create a secret using a yaml definition ``` apiVersion: v1 kind: Secret metadata: name: my-secret stringData: username: YWRtaW4= password: MWYyZDFlMmU2N2Rm ``` For best practice, delete the definition after you create it ```bash kubectl apply -f my-secret.yml rm my-secret.yml ``` Pass the sensitive data to containers as an environment variable ``` apiVersion: v1 kind: Pod metadata: name: my-secret-pod spec: containers: - name: myapp-container image: busybox command: ['sh', '-c', "echo Hello, Kubernetes! && sleep 3600"] env: - name: SECRET_USERNAME valueFrom: secretKeyRef: name: mysecret key: username - name: SECRET_PASSWORD valueFrom: secretKeyRef: name: mysecret key: password ``` # Working with ServiceAccounts > A service account provides an identity for processes that run in a Pod. Ref: - [https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/](https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/) - [https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/](https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/) Create a ServiceAccount ```bash kubectl create serviceaccount my-serviceaccount ``` ``` apiVersion: v1 kind: Pod metadata: name: my-serviceaccount-pod spec: serviceAccountName: my-serviceaccount containers: - name: myapp-container image: busybox command: ['sh', '-c', "echo Hello, Kubernetes! && sleep 3600"] ``` # Working with Multi-Container Pods > Multi-container pods provide an opportunity to enhance containers with helper containers that provide additional functionality Ref: - [https://kubernetes.io/docs/concepts/cluster-administration/logging/#using-a-sidecar-container-with-the-logging-agent](https://kubernetes.io/docs/concepts/cluster-administration/logging/#using-a-sidecar-container-with-the-logging-agent) - [https://kubernetes.io/docs/tasks/access-application-cluster/communicate-containers-same-pod-shared-volume/](https://kubernetes.io/docs/tasks/access-application-cluster/communicate-containers-same-pod-shared-volume/) - [https://kubernetes.io/docs/tasks/access-application-cluster/communicate-containers-same-pod-shared-volume/](https://kubernetes.io/docs/tasks/access-application-cluster/communicate-containers-same-pod-shared-volume/) ``` apiVersion: v1 kind: Pod metadata: name: multi-container-pod spec: containers: - name: nginx image: nginx:1.15.8 ports: - containerPort: 80 - name: busybox-sidecar image: busybox command: ['sh', '-c', 'while true; do sleep 30; done;'] ``` # Working with Probes > A Probe is a diagnostic performed periodically by the kubelet on a Container. ``livenessProbe``: Indicates whether the Container is running. If the liveness probe fails, the kubelet kills the Container, and the Container is subjected to its restart policy. If a Container does not provide a liveness probe, the default state is Success. ``` apiVersion: v1 kind: Pod metadata: labels: test: liveness name: liveness-exec spec: containers: - name: liveness image: k8s.gcr.io/busybox args: - /bin/sh - -c - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600 livenessProbe: exec: command: - cat - /tmp/healthy initialDelaySeconds: 5 periodSeconds: 5 ``` ``readinessProbe``: Indicates whether the Container is ready to service requests. If the readiness probe fails, the endpoints controller removes the Pod’s IP address from the endpoints of all Services that match the Pod. The default state of readiness before the initial delay is Failure. If a Container does not provide a readiness probe, the default state is Success. ``` apiVersion: v1 kind: Pod metadata: labels: test: liveness name: liveness-exec spec: containers: - name: liveness image: k8s.gcr.io/busybox args: - /bin/sh - -c - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600 readinessProbe: exec: command: - cat - /tmp/healthy initialDelaySeconds: 5 periodSeconds: 5 ``` ``startupProbe``: Indicates whether the application within the Container is started. All other probes are disabled if a startup probe is provided, until it succeeds. If the startup probe fails, the kubelet kills the Container, and the Container is subjected to its restart policy. If a Container does not provide a startup probe, the default state is Success. ``` apiVersion: v1 kind: Pod metadata: labels: test: liveness name: liveness-exec spec: containers: - name: liveness image: k8s.gcr.io/busybox args: - /bin/sh - -c - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600 startupProbe: httpGet: path: /healthz port: liveness-port failureThreshold: 30 periodSeconds: 10 ``` Ref: - [https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#container-probes](https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#container-probes) - [https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/](https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/) - [https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/](https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/) # Working with Container Logging Ref: [https://kubernetes.io/docs/concepts/cluster-administration/logging/](https://kubernetes.io/docs/concepts/cluster-administration/logging/) Get the container's logs ``` kubectl logs ``` Get the specfic container's logs in a multi-container pod ``` kubectl logs -c ``` ``` kubectl logs > ``` # Working with Monitoring Applications Ref: [https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/](https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/) ```bash # Get resource usage for all pods in the default namespace kubectl top pods # Get resource usage for a single pod kubectl top pod # Get resource usage for all pods in a specific namespace kubectl top pods -n kube-system # Get resource usage for nodes kubectl top nodes ``` # Working with Labels, Selectors and Annotations Ref: - [https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/](https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/) - [https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/](https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/) ``` apiVersion: v1 kind: Pod metadata: name: my-production-label-pod labels: app: my-app environment: production spec: containers: - name: nginx image: nginx ``` ``` apiVersion: v1 kind: Pod metadata: name: my-development-label-pod labels: app: my-app environment: development spec: containers: - name: nginx image: nginx ``` ```bash # show labels for each pods kubectl get pods --show-labels # get pods using equality-based selectors kubectl get pods -l environment=production kubectl get pods -l environment=development # get pods using inequality-based selectors kubectl get pods -l environment!=production # get pods using set-based selectors kubectl get pods -l 'environment in (development,production)' # get pods using chained multiple selectors with a comma-delimited list kubectl get pods -l app=my-app,environment=production # to view existing labels and annotations kubectl describe pod ``` # Working with Deployment > A Deployment provides declarative updates for Pods and ReplicaSets. You describe a desired state in a Deployment, and the Deployment Controller changes the actual state to the desired state at a controlled rate. You can define Deployments to create new ReplicaSets, or to remove existing Deployments and adopt all their resources with new Deployments. Ref: [https://kubernetes.io/docs/concepts/workloads/controllers/deployment/](https://kubernetes.io/docs/concepts/workloads/controllers/deployment/) ``` apiVersion: apps/v1 kind: Deployment metadata: name: nginx-deployment spec: replicas: 3 selector: matchLabels: app: nginx template: metadata: labels: app: nginx spec: containers: - name: nginx image: nginx:1.7.9 ports: - containerPort: 80 ``` ``` kubectl get deployments kubectl get deployment kubectl describe deployment kubectl edit deployment kubectl delete deployment ``` # Working with Rolling Update ``` apiVersion: apps/v1 kind: Deployment metadata: name: rolling-deployment spec: replicas: 3 selector: matchLabels: app: nginx template: metadata: labels: app: nginx spec: containers: - name: nginx image: nginx:1.7.1 ports: - containerPort: 80 ``` ```bash # Perform a rolling update kubectl set image deployment/rolling-deployment nginx=nginx:1.7.9 --record # Explore the rollout history of the deployment kubectl rollout history deployment/rolling-deployment kubectl rollout history deployment/rolling-deployment --revision=2 # Roll back to the previous revision kubectl rollout undo deployment/rolling-deployment # Roll back to a specific earlier revision by providing the revision number kubectl rollout undo deployment/rolling-deployment --to-revision=1 ``` Proportional scaling by setting ``maxSurge`` and ``maxUnavailable`` in the deployment spec ``` spec: strategy: rollingUpdate: maxSurge: 3 maxUnavailable: 2 ``` # Working with Jobs and CronJobs Ref: - [https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/](https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/) - [https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/](https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/) - [https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/](https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/) This job calculates the first 2000 digits of pi ``` apiVersion: batch/v1 kind: Job metadata: name: pi spec: template: spec: containers: - name: pi image: perl command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"] restartPolicy: Never backoffLimit: 4 ``` Check the status of Jobs. It may take several seconds to finish. ```bash kubectl get jobs ``` By running ``kubectl get pods``, you should see a new pod with STATUS ``Completed`` ```bash kubectl get pods ``` Check the output ```bash kubectl logs ``` A cronjob example ``` apiVersion: batch/v1beta1 kind: CronJob metadata: name: hello spec: schedule: "*/1 * * * *" jobTemplate: spec: template: spec: containers: - name: hello image: busybox args: - /bin/sh - -c - date; echo Hello from the Kubernetes cluster restartPolicy: OnFailure ``` List and check the status of CronJobs ```bash kubectl get cronjobs ``` # Working with Services Ref: - [https://kubernetes.io/docs/concepts/services-networking/service/](https://kubernetes.io/docs/concepts/services-networking/service/) - [https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/](https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/) ``` apiVersion: apps/v1 kind: Deployment metadata: name: nginx-deployment spec: replicas: 3 selector: matchLabels: app: nginx template: metadata: labels: app: nginx spec: containers: - name: nginx image: nginx:1.7.9 ports: - containerPort: 80 ``` ``` apiVersion: apps/v1 kind: Deployment metadata: name: nginx-deployment spec: replicas: 3 selector: matchLabels: app: nginx template: metadata: labels: app: nginx spec: containers: - name: nginx image: nginx:1.7.9 ports: - containerPort: 80 ``` ```bash # Get services kubectl get svc # Get endpoints kubectl get endpoints my-service ``` # Working with Network Policies > A network policy is a specification of how groups of pods are allowed to communicate with each other and other network endpoints. Ref: [https://kubernetes.io/docs/concepts/services-networking/network-policies/](https://kubernetes.io/docs/concepts/services-networking/network-policies/) In order to use NetworkPolicies in the cluster, we need to have a network plugin called ``canal`` ``` wget -O canal.yaml https://docs.projectcalico.org/v3.5/getting-started/kubernetes/installation/hosted/canal/canal.yaml kubectl apply -f canal.yaml ``` Create a sample nginx pod ``` apiVersion: v1 kind: Pod metadata: name: network-policy-secure-pod labels: app: secure-app spec: containers: - name: nginx image: nginx ports: - containerPort: 80 ``` Create a client pod used to test network access to the nginx pod ``` apiVersion: v1 kind: Pod metadata: name: network-policy-client-pod spec: containers: - name: busybox image: radial/busyboxplus:curl command: ["/bin/sh", "-c", "while true; do sleep 3600; done"] ``` Get the cluster ip address of the nginx pod ``` kubectl get pod network-policy-secure-pod -o wide ``` By executing the below command, you should see the network is accessible ``` kubectl exec network-policy-client-pod -- curl ``` Create a network policy to restricts all access to the secure pod except pods with ``allow-access: "true"`` label ``` apiVersion: networking.k8s.io/v1 kind: NetworkPolicy metadata: name: my-network-policy spec: podSelector: matchLabels: app: secure-app policyTypes: - Ingress - Egress ingress: - from: - podSelector: matchLabels: allow-access: "true" ports: - protocol: TCP port: 80 egress: - to: - podSelector: matchLabels: allow-access: "true" ports: - protocol: TCP port: 80 ``` Apply before network policy and execute the curl command again, you should see the network is not accessible ``` kubectl exec network-policy-client-pod -- curl ``` Get more info about NetworkPolicy in the cluster ``` kubectl get networkpolicies kubectl describe networkpolicy my-network-policy ``` Edit the client pod ``` kubectl edit pod network-policy-client-pod ``` under metadata, add ``` labels: allow-access: "true" ``` Re-run the curl command again, the secure pod is accessible from the client pod # Working with Volumes > On-disk files in a Container are ephemeral, which presents some problems for non-trivial applications when running in Containers. First, when a Container crashes, kubelet will restart it, but the files will be lost - the Container starts with a clean state. Second, when running Containers together in a Pod it is often necessary to share files between those Containers. The Kubernetes Volume abstraction solves both of these problems. Ref: [https://kubernetes.io/docs/concepts/storage/volumes/](https://kubernetes.io/docs/concepts/storage/volumes/) ``` apiVersion: v1 kind: Pod metadata: name: volume-pod spec: containers: - image: busybox name: busybox command: ["/bin/sh", "-c", "while true; do sleep 3600; done"] volumeMounts: - mountPath: /tmp/storage name: my-volume volumes: - name: my-volume emptyDir: {} ``` # Working with PersistentVolumes and PersistentVolumeClaims > PersistentVolumes (PVs) and PersistentVolumeClaims (PVCs) provide a way to easily consume storage resources, especially in the context of a complex production environment that uses multiple storage solutions. Ref: - [https://kubernetes.io/docs/concepts/storage/persistent-volumes/](https://kubernetes.io/docs/concepts/storage/persistent-volumes/) - [https://kubernetes.io/docs/tasks/configure-pod-container/configure-persistent-volume-storage/](https://kubernetes.io/docs/tasks/configure-pod-container/configure-persistent-volume-storage/) ``` kind: PersistentVolume apiVersion: v1 metadata: name: my-pv spec: storageClassName: local-storage capacity: storage: 1Gi accessModes: - ReadWriteOnce hostPath: path: "/mnt/data" ``` ``` apiVersion: v1 kind: PersistentVolumeClaim metadata: name: my-pvc spec: storageClassName: local-storage accessModes: - ReadWriteOnce resources: requests: storage: 512Mi ``` ``` kubectl get pv kubectl get pvc ``` ``` kind: Pod apiVersion: v1 metadata: name: my-pvc-pod spec: containers: - name: busybox image: busybox command: ["/bin/sh", "-c", "while true; do sleep 3600; done"] volumeMounts: - mountPath: "/mnt/storage" name: my-storage volumes: - name: my-storage persistentVolumeClaim: claimName: my-pvc ```

No comments:

Post a Comment

A Fun Problem - Math

# Problem Statement JATC's math teacher always gives the class some interesting math problems so that they don't get bored. Today t...